Notes on fastai Book Ch. 8

ai
fastai
notes
pytorch
Chapter 8 provides a deep dive into collaborative filtering.
Author

Christian Mills

Published

March 28, 2022

This post is part of the following series:

Collaborative Filtering

  • Look at which items the current user has used or liked, find other users who have used or liked similar items, and then recommend other items that those users have used or like.
    • identifies latent factors to compare similarity
  • used for recommendation systems
  • Uses
    • recommending movies
    • figuring out what to highlight on a user’s homepage
    • deciding what stories to show in a social media feed
    • selecting diagnoses for patients

Probabilistic Matrix Factorization

Probabilistic Matrix Factorization Paper

Probabilistic Matrix Factorization - Matrix Factorization (Part 1)


#hide
# !pip install -Uqq fastbook
import fastbook
fastbook.setup_book()
#hide
from fastbook import *

A First Look at the Data

MovieLens Dataset

  • https://grouplens.org/datasets/movielens/
  • 25M Dataset
    • 25 million movie ratings
    • one million tag applications applied to 62,000 movies by 162,000 users
    • includes tag genome data with 15 million relevance scores across 1,129 tags
    • released 12/2019
  • 100K Dataset
    • 100 thousand movie ratings from 1000 users on 1700 movies
    • released 4/1998

URLs.ML_100k
'https://files.grouplens.org/datasets/movielens/ml-100k.zip'

from fastai.collab import *
from fastai.tabular.all import *

path = untar_data(URLs.ML_100k)
path
Path('/home/innom-dt/.fastai/data/ml-100k')

pd.DataFrame(list(path.ls()))
0
0 /home/innom-dt/.fastai/data/ml-100k/ub.base
1 /home/innom-dt/.fastai/data/ml-100k/u5.test
2 /home/innom-dt/.fastai/data/ml-100k/u4.base
3 /home/innom-dt/.fastai/data/ml-100k/u1.test
4 /home/innom-dt/.fastai/data/ml-100k/ua.base
5 /home/innom-dt/.fastai/data/ml-100k/u.occupation
6 /home/innom-dt/.fastai/data/ml-100k/mku.sh
7 /home/innom-dt/.fastai/data/ml-100k/ub.test
8 /home/innom-dt/.fastai/data/ml-100k/allbut.pl
9 /home/innom-dt/.fastai/data/ml-100k/u.info
10 /home/innom-dt/.fastai/data/ml-100k/u5.base
11 /home/innom-dt/.fastai/data/ml-100k/u2.test
12 /home/innom-dt/.fastai/data/ml-100k/u.genre
13 /home/innom-dt/.fastai/data/ml-100k/u2.base
14 /home/innom-dt/.fastai/data/ml-100k/u.user
15 /home/innom-dt/.fastai/data/ml-100k/README
16 /home/innom-dt/.fastai/data/ml-100k/u3.test
17 /home/innom-dt/.fastai/data/ml-100k/u1.base
18 /home/innom-dt/.fastai/data/ml-100k/u.data
19 /home/innom-dt/.fastai/data/ml-100k/u.item
20 /home/innom-dt/.fastai/data/ml-100k/ua.test
21 /home/innom-dt/.fastai/data/ml-100k/u3.base
22 /home/innom-dt/.fastai/data/ml-100k/u4.test

!cat $path/'u.data' | head -5
196 242 3   881250949
186 302 3   891717742
22  377 1   878887116
244 51  2   880606923
166 346 1   886397596
cat: write error: Broken pipe

ratings = pd.read_csv(path/'u.data', delimiter='\t', header=None,
                      names=['user','movie','rating','timestamp'])
ratings.head()
user movie rating timestamp
0 196 242 3 881250949
1 186 302 3 891717742
2 22 377 1 878887116
3 244 51 2 880606923
4 166 346 1 886397596

ratings[ratings['movie'] == 242][ratings['user'] == 305]
user movie rating timestamp
95720 305 242 5 886307828

pandas pivot table


pd.pivot_table(ratings.head(10), values='rating', index=['user'], columns=['movie'], fill_value=None, sort=False)
movie 51 86 242 265 302 346 377 451 465 474
user
196 NaN NaN 3.0 NaN NaN NaN NaN NaN NaN NaN
186 NaN NaN NaN NaN 3.0 NaN NaN NaN NaN NaN
22 NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN
244 2.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN
166 NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN
298 NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.0
115 NaN NaN NaN 2.0 NaN NaN NaN NaN NaN NaN
253 NaN NaN NaN NaN NaN NaN NaN NaN 5.0 NaN
305 NaN NaN NaN NaN NaN NaN NaN 3.0 NaN NaN
6 NaN 3.0 NaN NaN NaN NaN NaN NaN NaN NaN

Note: The NaN values indicate a given user has not provided a rating for the corresponding movie

pandas DataFrame.pivot


ratings.head(10).pivot(values='rating', index=['user'], columns=['movie'])
movie 51 86 242 265 302 346 377 451 465 474
user
6 NaN 3.0 NaN NaN NaN NaN NaN NaN NaN NaN
22 NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN
115 NaN NaN NaN 2.0 NaN NaN NaN NaN NaN NaN
166 NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN
186 NaN NaN NaN NaN 3.0 NaN NaN NaN NaN NaN
196 NaN NaN 3.0 NaN NaN NaN NaN NaN NaN NaN
244 2.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN
253 NaN NaN NaN NaN NaN NaN NaN NaN 5.0 NaN
298 NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.0
305 NaN NaN NaN NaN NaN NaN NaN 3.0 NaN NaN

# Create a sample movie entry
# Index 0: science-fiction
# Index 1: action
# Index 2: old movies
# High values for science fiction and action
# Low value for old movies
last_skywalker = np.array([0.98,0.9,-0.9])
# Create a sample user
# High values for science fiction and action
# Low value for old movies
user1 = np.array([0.9,0.8,-0.6])

Dot Product

  • the mathematical operation of multiplying the elements of two vectors together, and then summing up the results

# Multiply the movie and user properties to
# determine how likely the user is to like the movie
(user1*last_skywalker).sum()
2.1420000000000003

Note: The closer the values for the user and movie, the more likely the user is to like the movie

# The user probably will not like this movie
casablanca = np.array([-0.99,-0.3,0.8])

(user1*casablanca).sum()
-1.611

Learning the Latent Factors

  • can use gradient descent to learn the latent factors for each item and user in a dataset

Steps

  1. Randomly initialize some parameters for every user and item in the dataset
    • the parameters represent the latent factors
    • parameters for each user and item are represented as vectors of numbers
    • the size of the vectors for the users and the items must be dot product compatible
  2. Calculate predictions
    • take the dot product of the parameters for each movie with the parameters of each user to predict a rating each user would give each item
  3. Calculate the loss from predictions
    • can use any loss function, such as Mean Square Error
  4. Update the parameter values for the items and users

Creating the DataLoaders

!cat $path/'u.item' | head -5
1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0
2|GoldenEye (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?GoldenEye%20(1995)|0|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0
3|Four Rooms (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Four%20Rooms%20(1995)|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0
4|Get Shorty (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Get%20Shorty%20(1995)|0|1|0|0|0|1|0|0|1|0|0|0|0|0|0|0|0|0|0
5|Copycat (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Copycat%20(1995)|0|0|0|0|0|0|1|0|1|0|0|0|0|0|0|0|1|0|0
cat: write error: Broken pipe

pandas.read_csv


movies = pd.read_csv(path/'u.item',
                     # separate columns using '|' instead of ','
                     delimiter='|', 
                     encoding='latin-1',
                     # only use the first two columns
                     usecols=(0,1), 
                     names=('movie','title'), 
                     header=None)
movies.head()
movie title
0 1 Toy Story (1995)
1 2 GoldenEye (1995)
2 3 Four Rooms (1995)
3 4 Get Shorty (1995)
4 5 Copycat (1995)

DataFrame.merge


# Add the movie titles to the ratings DataFrame
ratings = ratings.merge(movies)
ratings.head()
user movie rating timestamp title
0 196 242 3 881250949 Kolya (1996)
1 63 242 3 875747190 Kolya (1996)
2 226 242 5 883888671 Kolya (1996)
3 154 242 3 879138235 Kolya (1996)
4 306 242 5 876503793 Kolya (1996)

fastai CollabDataLoaders

CollabDataLoaders.from_df


dls = CollabDataLoaders.from_df(ratings, 
                                # The column containing the users
                                user_name='user', 
                                # The column containing the items
                                item_name='title', 
                                # The column containing the user ratings
                                rating_name='rating', 
                                bs=64)
dls.show_batch()
user title rating
0 795 Shining, The (1980) 3
1 573 Leaving Las Vegas (1995) 3
2 38 Snow White and the Seven Dwarfs (1937) 5
3 378 Breakdown (1997) 3
4 698 Third Man, The (1949) 2
5 452 Mary Poppins (1964) 4
6 668 Indiana Jones and the Last Crusade (1989) 5
7 167 Escape from L.A. (1996) 3
8 83 First Kid (1996) 4
9 650 Glengarry Glen Ross (1992) 3

dls.after_iter
<bound method after_iter of <fastai.tabular.core.TabDataLoader object at 0x7f8a75c0ffd0>>

TabDataLoader
fastai.tabular.core.TabDataLoader

dls.after_batch
Pipeline: ReadTabBatch

ReadTabBatch
fastai.tabular.core.ReadTabBatch

fastai TabDataLoader

fastai ReadTabBatch


n_users  = len(dls.classes['user'])
print(f"Number of users: {n_users}")
n_movies = len(dls.classes['title'])
print(f"Numer of movies: {n_movies}")
n_factors = 5

# Create randomly initialized parameters for users and movies
user_factors = torch.randn(n_users, n_factors)
movie_factors = torch.randn(n_movies, n_factors)
Number of users: 944
Numer of movies: 1665

one_hot
<function fastai.torch_core.one_hot(x, c)>

fastai one_hot


# Create a one-hot encoding for the user at index 3
one_hot_3 = one_hot(3, n_users).float()
print(one_hot_3.shape)
print(one_hot_3[:10])
torch.Size([944])
tensor([0., 0., 0., 1., 0., 0., 0., 0., 0., 0.])

# Look up the randomly initialized parameters for the user at index 3
user_factors.t() @ one_hot_3
tensor([-1.2274,  0.0769, -0.1502, -0.7066,  0.3554])

user_factors[3]
tensor([-1.2274,  0.0769, -0.1502, -0.7066,  0.3554])

Collaborative Filtering from Scratch

Embedding
fastai.layers.Embedding

fastai Embedding

PyTorch Embedding


class DotProduct(Module):
    def __init__(self, n_users, n_movies, n_factors):
        # Initialize parameters for users and items
        self.user_factors = Embedding(n_users, n_factors)
        self.movie_factors = Embedding(n_movies, n_factors)
        
    def forward(self, x):
        users = self.user_factors(x[:,0])
        movies = self.movie_factors(x[:,1])
        return (users * movies).sum(dim=1)

x,y = dls.one_batch()
x.shape
torch.Size([64, 2])

model = DotProduct(n_users, n_movies, 50)
print(model.user_factors)
print(model.movie_factors)
Embedding(944, 50)
Embedding(1665, 50)

print(list(model.user_factors.parameters())[0].shape)
list(model.user_factors.parameters())
torch.Size([944, 50])

[Parameter containing:
 tensor([[ 0.0077,  0.0033, -0.0076,  ..., -0.0113,  0.0040,  0.0027],
         [ 0.0159, -0.0169, -0.0066,  ...,  0.0090,  0.0019,  0.0085],
         [ 0.0098,  0.0111, -0.0081,  ..., -0.0098,  0.0037,  0.0079],
         ...,
         [-0.0009, -0.0022, -0.0017,  ..., -0.0001, -0.0034, -0.0163],
         [ 0.0065,  0.0161,  0.0046,  ..., -0.0084,  0.0055,  0.0117],
         [-0.0099,  0.0070, -0.0147,  ...,  0.0002,  0.0051,  0.0035]], requires_grad=True)]

print(list(model.user_factors.parameters())[0][0].shape)
list(model.user_factors.parameters())[0][0]
torch.Size([50])

tensor([ 0.0077,  0.0033, -0.0076, -0.0052,  0.0114,  0.0011, -0.0099,  0.0103, -0.0180, -0.0123, -0.0114,  0.0116,  0.0187,  0.0104, -0.0078, -0.0100,  0.0111,  0.0040, -0.0034, -0.0064, -0.0039,
        -0.0153,  0.0170,  0.0067, -0.0055, -0.0033, -0.0050, -0.0032, -0.0059, -0.0064,  0.0094,  0.0142,  0.0060,  0.0111, -0.0008, -0.0057,  0.0135,  0.0094,  0.0050,  0.0130, -0.0070,  0.0061,
         0.0043, -0.0046,  0.0059,  0.0027, -0.0030, -0.0113,  0.0040,  0.0027], grad_fn=<SelectBackward0>)

print(model.user_factors(x[:,0]).shape)
print(model.movie_factors(x[:,1]).shape)
torch.Size([64, 50])
torch.Size([64, 50])

learn = Learner(dls, model, loss_func=MSELossFlat())

learn.fit_one_cycle(5, 5e-3)
epoch train_loss valid_loss time
0 1.327861 1.305103 00:03
1 1.077520 1.088959 00:03
2 0.962058 0.962743 00:03
3 0.818917 0.885188 00:03
4 0.793682 0.870693 00:03

print(list(model.user_factors.parameters())[0][0].shape)
list(model.user_factors.parameters())[0][0]
torch.Size([50])

tensor([ 0.0066,  0.0028, -0.0065, -0.0044,  0.0098,  0.0010, -0.0084,  0.0088, -0.0154, -0.0105, -0.0098,  0.0099,  0.0160,  0.0088, -0.0066, -0.0085,  0.0094,  0.0034, -0.0029, -0.0055, -0.0033,
        -0.0131,  0.0145,  0.0057, -0.0047, -0.0028, -0.0043, -0.0027, -0.0050, -0.0055,  0.0080,  0.0121,  0.0052,  0.0095, -0.0007, -0.0049,  0.0115,  0.0080,  0.0042,  0.0111, -0.0060,  0.0052,
         0.0036, -0.0039,  0.0050,  0.0023, -0.0026, -0.0097,  0.0034,  0.0023], device='cuda:0', grad_fn=<SelectBackward0>)

class DotProduct(Module):
    def __init__(self, n_users, n_movies, n_factors, y_range=(0,5.5)):
        self.user_factors = Embedding(n_users, n_factors)
        self.movie_factors = Embedding(n_movies, n_factors)
        self.y_range = y_range
        
    def forward(self, x):
        users = self.user_factors(x[:,0])
        movies = self.movie_factors(x[:,1])
        # Force predictions to be in the valid range of values
        return sigmoid_range((users * movies).sum(dim=1), *self.y_range)

model = DotProduct(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3)
epoch train_loss valid_loss time
0 1.018389 0.986983 00:03
1 0.904263 0.896296 00:03
2 0.678135 0.870120 00:03
3 0.486659 0.874074 00:03
4 0.368135 0.878279 00:03

class DotProductBias(Module):
    def __init__(self, n_users, n_movies, n_factors, y_range=(0,5.5)):
        self.user_factors = Embedding(n_users, n_factors)
        self.user_bias = Embedding(n_users, 1)
        self.movie_factors = Embedding(n_movies, n_factors)
        self.movie_bias = Embedding(n_movies, 1)
        self.y_range = y_range
        
    def forward(self, x):
        users = self.user_factors(x[:,0])
        movies = self.movie_factors(x[:,1])
        res = (users * movies).sum(dim=1, keepdim=True)
        # Add bias values for individual users and items
        res += self.user_bias(x[:,0]) + self.movie_bias(x[:,1])
        return sigmoid_range(res, *self.y_range)

model = DotProductBias(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3)
epoch train_loss valid_loss time
0 0.939382 0.945063 00:03
1 0.816200 0.851248 00:03
2 0.612317 0.852061 00:03
3 0.410081 0.881404 00:03
4 0.292610 0.889636 00:03

Note: The validation loss stopped improving half way through training, while the train loss continues to improve. This suggests the model is overfitting. * We can’t use data augmentation * An alternative is to use weight decay

Weight Decay

  • Also called L2 regularization
  • consists of adding the sum of all the weights squared to your loss function
    • a weight decay scalar value is used to control the influence of this addition
  • encourages the weights to be as small as possible
  • can reduce overfitting by forcing the model to approximate a less complex function
  • hinders training, but improves generalization
  • fastai weight_decay function

x = np.linspace(-2,2,100)
a_s = [1,2,5,10,50] 
ys = [a * x**2 for a in a_s]
_,ax = plt.subplots(figsize=(8,6))
for a,y in zip(a_s,ys): ax.plot(x,y, label=f'a={a}')
ax.set_ylim([0,5])
ax.legend();

model = DotProductBias(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
# Add weight decay
learn.fit_one_cycle(5, 5e-3, wd=0.1)
epoch train_loss valid_loss time
0 0.946304 0.936147 00:03
1 0.854285 0.870890 00:03
2 0.725005 0.828756 00:03
3 0.602717 0.819495 00:03
4 0.495025 0.820400 00:03

Creating Our Own Embedding Module

class T(Module):
    # Tensors are not automatically added as parameters
    def __init__(self): self.a = torch.ones(3)

L(T().parameters())
(#0) []

class T(Module):
    # Need to wrap Tensors in nn.Parameter()
    # Create an embedding of size 3
    def __init__(self): self.a = nn.Parameter(torch.ones(3))

L(T().parameters())
(#1) [Parameter containing:
tensor([1., 1., 1.], requires_grad=True)]

class T(Module):
    def __init__(self): self.a = nn.Linear(1, 3, bias=False)

t = T()
L(t.parameters())
(#1) [Parameter containing:
tensor([[0.7957],
        [0.3785],
        [0.9707]], requires_grad=True)]

type(t.a.weight)
torch.nn.parameter.Parameter

PyTorch Tensor.normal_


# Create an Embedding of the specified size
def create_params(size):
    # Initialize values to have a mean of 0 and a standard deviation of 0.01
    return nn.Parameter(torch.zeros(*size).normal_(0, 0.01))

class DotProductBias(Module):
    def __init__(self, n_users, n_movies, n_factors, y_range=(0,5.5)):
        self.user_factors = create_params([n_users, n_factors])
        self.user_bias = create_params([n_users])
        self.movie_factors = create_params([n_movies, n_factors])
        self.movie_bias = create_params([n_movies])
        self.y_range = y_range
        
    def forward(self, x):
        users = self.user_factors[x[:,0]]
        movies = self.movie_factors[x[:,1]]
        res = (users*movies).sum(dim=1)
        res += self.user_bias[x[:,0]] + self.movie_bias[x[:,1]]
        return sigmoid_range(res, *self.y_range)

model = DotProductBias(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3, wd=0.1)
epoch train_loss valid_loss time
0 0.961887 0.941220 00:04
1 0.810713 0.871038 00:04
2 0.738180 0.831898 00:04
3 0.581444 0.820112 00:04
4 0.468566 0.820132 00:04

Note: Results should be nearly identical to using the provided Embedding class

Interpreting Embeddings and Biases

movie_bias = learn.model.movie_bias.squeeze()
# Get the five movies with the lowest bias values
idxs = movie_bias.argsort()[:5]
[dls.classes['title'][i] for i in idxs]
['Children of the Corn: The Gathering (1996)',
 'Cable Guy, The (1996)',
 'Mortal Kombat: Annihilation (1997)',
 '3 Ninjas: High Noon At Mega Mountain (1998)',
 'Grease 2 (1982)']

Note: A low bias value for a movie indicates that even well matched users probably will give them low ratings.

idxs = movie_bias.argsort(descending=True)[:5]
[dls.classes['title'][i] for i in idxs]
['Titanic (1997)',
 'Star Wars (1977)',
 "Schindler's List (1993)",
 'Shawshank Redemption, The (1994)',
 'As Good As It Gets (1997)']

Note: A high bias value for a movie indicates the even users who are poorly matched will probably give them high ratings.

Principle Component Analysis (PCA)

  • A technique used to emphasize variation and bring out strong patterins in a dataset
  • Used to make data easy to explore and visualize
  • Leverages the fact the data has low intrinsic dimensionality
Principle Component Analysis Explained Visually

Computational Linear Algebra 4: Randomized SVD & Robust PCA

fastai Tensor.pca


ratings.groupby('title')['rating'].count().head()
title
'Til There Was You (1997)      9
1-900 (1994)                   5
101 Dalmatians (1996)        109
12 Angry Men (1957)          125
187 (1997)                    41
Name: rating, dtype: int64

# Get the number of ratings for each movie
g = ratings.groupby('title')['rating'].count()
# Get the 1000 most rated movies
top_movies = g.sort_values(ascending=False).index.values[:1000]
# Get the index values for the top movies
top_idxs = tensor([learn.dls.classes['title'].o2i[m] for m in top_movies])
# Detach the movie_factors embedding from the GPU
movie_w = learn.model.movie_factors[top_idxs].cpu().detach()
# Compute PCA
movie_pca = movie_w.pca(3)
fac0,fac1,fac2 = movie_pca.t()
idxs = list(range(50))
X = fac0[idxs]
Y = fac2[idxs]
plt.figure(figsize=(12,12))
plt.scatter(X, Y)
for i, x, y in zip(top_movies[idxs], X, Y):
    plt.text(x,y,i, color=np.random.rand(3)*0.7, fontsize=11)
plt.show()

Using fastai.collab

fastai collab_learner


learn = collab_learner(dls, n_factors=50, y_range=(0, 5.5))

learn.fit_one_cycle(5, 5e-3, wd=0.1)
epoch train_loss valid_loss time
0 0.994621 0.937675 00:03
1 0.824818 0.857471 00:03
2 0.742480 0.824739 00:03
3 0.589424 0.814619 00:03
4 0.514074 0.814143 00:03

learn.model
EmbeddingDotBias(
  (u_weight): Embedding(944, 50)
  (i_weight): Embedding(1665, 50)
  (u_bias): Embedding(944, 1)
  (i_bias): Embedding(1665, 1)
)

movie_bias = learn.model.i_bias.weight.squeeze()
idxs = movie_bias.argsort(descending=True)[:5]
[dls.classes['title'][i] for i in idxs]
['Shawshank Redemption, The (1994)',
 "Schindler's List (1993)",
 'L.A. Confidential (1997)',
 'Titanic (1997)',
 'Star Wars (1977)']

Embedding Distance

  • items with similar embedding values should have similar qualities
  • We can calculate the distance between two 2D coordinates using \(\sqrt{x^{2} + y^{2}}\)

movie_factors = learn.model.i_weight.weight
idx = dls.classes['title'].o2i['Silence of the Lambs, The (1991)']
distances = nn.CosineSimilarity(dim=1)(movie_factors, movie_factors[idx][None])
idx = distances.argsort(descending=True)[1]
dls.classes['title'][idx]
'Everest (1998)'

Bootstrapping a Collaborative Filtering Model

The Bootstrapping Problem

  • What items do you recommend your very first user?
  • What do you do when a new user signs up?

No magic solution

  • need to use common sense
  • could assign new users the mean of all the embedding vectors of your other users
    • has the problem that the mean of all the embedding vectors might not be a common combination
    • would probably be better to pick a user to represent average taste
  • could use a tabular model based on user metadata to constaruct your initial embedding vector
    • when a user signs up, think about what questions you could ask to hellp you understand their tastes
    • create a model in which the dependent variable is a user’s embedding vector, and the independent variables are the results of the questions ou ask them, along with their signup metadata
  • be wary of a small number of extremely enthusiastic users effectively setting the recommendations for your whole user base
    • can trigger positive feedback loops
  • Try to think about all the ways in which feedback loops may be represented in your system and how you might be able to identify them in your data.

Deep Learning for Collaborative Filtering

  • take the results of the embedding lookup and concatenate them together
    • gives us a matrix we can pass through through linear layers and non-linearities
  • allows us to directly incorporate other data that may be relevant to the recommendation

get_emb_sz
<function fastai.tabular.model.get_emb_sz(to, sz_dict=None)>

fastai get_emb_sz


embs = get_emb_sz(dls)
embs
[(944, 74), (1665, 102)]

class CollabNN(Module):
    def __init__(self, user_sz, item_sz, y_range=(0,5.5), n_act=100):
        self.user_factors = Embedding(*user_sz)
        self.item_factors = Embedding(*item_sz)
        self.layers = nn.Sequential(
            nn.Linear(user_sz[1]+item_sz[1], n_act),
            nn.ReLU(),
            nn.Linear(n_act, 1))
        self.y_range = y_range
        
    def forward(self, x):
        embs = self.user_factors(x[:,0]),self.item_factors(x[:,1])
        x = self.layers(torch.cat(embs, dim=1))
        return sigmoid_range(x, *self.y_range)

model = CollabNN(*embs)
model
CollabNN(
  (user_factors): Embedding(944, 74)
  (item_factors): Embedding(1665, 102)
  (layers): Sequential(
    (0): Linear(in_features=176, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=1, bias=True)
  )
)

learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3, wd=0.01)
epoch train_loss valid_loss time
0 0.979066 0.948761 00:04
1 0.881136 0.900475 00:04
2 0.860850 0.873675 00:04
3 0.812708 0.859018 00:04
4 0.757145 0.862925 00:04

# Use a fastai provided model with the specified number of layers of the specified sizes
# Add two linear layers of size 100 and 50 respectively
learn = collab_learner(dls, use_nn=True, y_range=(0, 5.5), layers=[100,50])
learn.fit_one_cycle(5, 5e-3, wd=0.1)
epoch train_loss valid_loss time
0 0.989267 1.016765 00:04
1 0.956782 0.913140 00:04
2 0.880594 0.879068 00:04
3 0.822915 0.852487 00:04
4 0.748644 0.858280 00:04

learn.model
EmbeddingNN(
  (embeds): ModuleList(
    (0): Embedding(944, 74)
    (1): Embedding(1665, 102)
  )
  (emb_drop): Dropout(p=0.0, inplace=False)
  (bn_cont): BatchNorm1d(0, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layers): Sequential(
    (0): LinBnDrop(
      (0): Linear(in_features=176, out_features=100, bias=False)
      (1): ReLU(inplace=True)
      (2): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): LinBnDrop(
      (0): Linear(in_features=100, out_features=50, bias=False)
      (1): ReLU(inplace=True)
      (2): BatchNorm1d(50, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (2): LinBnDrop(
      (0): Linear(in_features=50, out_features=1, bias=True)
    )
    (3): SigmoidRange(low=0, high=5.5)
  )
)

EmbeddingNN
fastai.collab.EmbeddingNN

fastai EmbeddingNN

TabularModel
fastai.tabular.model.TabularModel

TabularModel

References

Previous: Notes on fastai Book Ch. 7

Next: Notes on fastai Book Ch. 9


About Me:
  • I’m Christian Mills, a deep learning consultant specializing in computer vision and practical AI implementations.
  • I help clients leverage cutting-edge AI technologies to solve real-world problems.
  • Learn more about me or reach out via email at [email protected] to discuss your project.